Más concretamente, sus trabajos recientes demuestran que las nuevas tecnologías de fabricación aditiva avanzada permiten obtener piezas de uso final completamente densas que ofrezcan una robustez insuperable. Piezas que puedan afrontar condiciones hipersónicas y vivir para contarlo: En palabras de Carson Slabaugh -director de investigación- “Cuando un vehículo vuela tan rápido se produce una compresión y un calentamiento extremos del aire que fluye alrededor y dentro del fuselaje. A Mach 5, se trata de un aumento de seis veces en la temperatura y un aumento de presión de unos cientos de veces. Ese tipo de carga térmica y mecánica hace que el régimen de la aerodinámica y la mecánica estructural cambie por completo en comparación con los sistemas de menor velocidad."
Por encima de Mach 5, la temperatura del aire atmosférico a medida que pasa es de miles de grados, la presión aumenta de manera igualmente extraordinaria, y por si esto fuera poco, el aire mismo puede incluso volverse químicamente reactivo. Todo esto combinado se convierte en un extraordinario reto para cualquier sistema de propulsión de misiles cuyo empuje provenga de la quema de combustible. Para enfrentar este desafío, Slabaugh y su equipo se asociaron con Velo3D para "imprimir" inyectores de combustible con geometrías complejas que logran un rendimiento de mezcla de aire y combustible muy alto, ya que los métodos de fabricación convencionales no podrían haber producido tales piezas, especialmente con las superaleaciones de metal de alta resistencia necesarias para sobrevivir a las condiciones de prueba extremas.
La capacidad de imprimir rápidamente en 3D una variedad de geometrías de inyectores para la cámara de combustión de prueba -en este caso hecha de Hastelloy X, una superaleación de alta resistencia y alta temperatura que soporta un entorno hipersónico- permitió al equipo de Purdue identificar rápidamente qué diseño funcionaba mejor. Los diseños se imprimieron y fueron sometidos a una serie de pruebas relevantes, hasta que en sólo dos semanas el equipo consiguió dar con el producto de mayor rendimiento que presentaba todas las características estacionarias y dinámicas que estaban buscando.
El próximo paso para el equipo ahora es ensamblar una gran variedad de inyectores en una cámara de combustión aún más potente. Velo3D está colaborando con los laboratorios Zucrow para ayudarlos a aprovechar sus capacidades mediante la integración del conjunto de inyectores en un componente impreso de una sola pieza. partir de ahí, los ingenieros continuarán refinando y ensamblando un sistema de combustión completo, con el objetivo de lograr una capacidad de prueba hipersónica a gran escala para finales de 2022.