El Pentágono quiere descubrir cómo fabricar misiles hipersónicos de manera más eficiente a través de un nuevo programa de fabricación aditiva denominado GAMMA-H (Growing Additive Manufacturing Maturity for Airbreathing Hypersonics) cuyo objetivo a grandes rasgos no es otro que desarrollar técnicas de impresión 3D que permitan obtener piezas aptas para cumplir los estándares de temperatura y propulsión propios de los misiles hipersónicos.
Este tipo de misiles que está caracterizado por desplazarse a velocidades superiores a Mach 5 (esto es, superiores a 1.700 metros por segundo) representa un doble reto estratégico y tecnológico ya que si por un lado es necesario rediseñar las piezas de una manera tal que el resultado no es posible de fabricarse por métodos convencionales, por otro lado sus principales competidores (China y Rusia) llevan la delantera en esta carrera, lo cual genera ganas de revancha en el Pentágono.
El reto de los puntos de ruptura
Entre los muchos retos que representa desplazar un misil a hipervelocidad, hay tres de ellos para los cuales la manufactura aditiva resulta prácticamente obligatoria: los puntos de ruptura, el flujo del aire, y el calor.
Cada unión entre dos piezas de un conjunto representa siempre un punto de ruptura, que por mucho y muy bien que esté resuelto va a tender por pura física a romperse.
Sin embargo, la manufactura aditiva permite convertir un conjunto de piezas en una sola pieza, ya que no existen limitaciones de diseño a la hora de fabricar, y por tanto se disminuye la cantidad de piezas individuales que forman el misil.
El reto del flujo de aire
Hay una ley física por la cual todos los fluidos se comportan como sólidos en función directa de su velocidad.
Esto supone que en condiciones de hipervelocidad, la atmosfera se comportará más como un sólido que como un fluido, lo cual requiere ser compensado para evitar disminuciones de maniobrabilidad y excesos de temperatura.
Para afrontar con éxito este desafío se hace necesario rediseñar las piezas del misil, y esto supone un verdadero reto porque normalmente el diseño resultante es, o puede ser en muchos casos, imposible de obtener por mecanizado... pero siempre será posible mediante manufactura aditiva.
El reto del calor
El contacto del extremo delantero del misil con la atmósfera, genera siempre un rozamiento que a su vez se convierte en calor.
En condiciones de hipervelocidad, el calor que se genera en el extremo delantero del misil puede ser tan elevado que se hace necesario pensar en el uso de materiales que aguanten esas temperaturas.
Este reto puede afrontarse con la utilización de materiales cerámicos, lo cual supone a su vez otro reto, y es cómo generar piezas de ciertas geometrías complejas, fabricándolas con cerámica. Ante este reto, existen tambien algunas soluciones basadas en el uso de la manufactura aditiva.
No hay comentarios:
Publicar un comentario